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Abstract

Family-based association studies are commonly used in genetic research because they can be 

robust to population stratification (PS). Recent advances in high-throughput genotyping 

technologies have produced a massive amount of genomic data in family-based studies. However, 

current family-based association tests are mainly focused on evaluating individual variants one at a 

time. In this article, we introduce a family-based generalized genetic random field (FB-GGRF) 

method to test the joint association between a set of autosomal SNPs (i.e. Single Nucleotide 

Polymorphisms) and disease phenotypes. The proposed method is a natural extension of a recently 

developed GGRF method for population-based case-control studies. It models offspring genotypes 

conditional on parental genotypes, and thus, is robust to population stratification. Through 

simulations, we showed that under various disease scenarios the FB-GGRF has improved power 

over a commonly used family-based sequence kernel association test (FB-SKAT). Further, similar 

to GGRF, the proposed FB-GGRF method is asymptotically well behaved, and does not require 

empirical adjustment of the type I error rates. We illustrate the proposed method using a study of 

congenital heart defects (CHDs) with family trios from the National Birth Defect Prevention Study 

(NBDPS).
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1. INTRODUCTION

Family-based studies are commonly used in genetic research. The simplest pedigree unit is a 

family trio (i.e. one offspring and the two biological parents), though much more complex 

pedigree structures (e.g. multi-generations) can be involved. Family-based association tests 

typically evaluate the transmission of alleles from parents to offspring. For example, the 

widely used transmission disequilibrium test (TDT) [Spielman, et al. 1993] considers an 

allele that is putatively associated with disease by comparing its frequency of being 

transmitted to affected offspring with that of its alternate allele. Since the un-transmitted 

alleles provide a control group with the same genetic ancestry, the TDT is robust to 

population stratification (PS). Other extensions of the TDT also model the offspring 

genotypes conditional on parental genotypes, accommodating various types of phenotypes 

[Fulker, et al. 1999; Lange, et al. 2003; Lazzeroni and Lange 1998; Martin, et al. 2000; 

Rabinowitz and Laird 2000; Spielman and Ewens 1998]. These statistical methods have 

emerged as promising tools facilitating association analyses in family-based studies. With 

the advance of high-throughput technologies and decreasing genotyping cost, family studies 

are now examining large numbers of variants for association with disease phenotypes.

Statistical methods for family data have routinely tested each individual genetic variant (e.g. 

SNP) in isolation, and a large number of disease susceptibility variants have been identified 

[Debette, et al. 2015; DeMeo, et al. 2002; Dunstan, et al. 2014; Lyon, et al. 2004; Smoller, et 

al. 2006]. Single variant analyses are most powerful when there is only a single causal 

variant within the gene and happens to be included in the study, but may have a number of 

limitations in more complex disease scenarios, such as failure to capture joint effects 

including epistasis interactions, and reduced power due to multiple testing correction or the 

small effect sizes of causal variants [Asimit and Zeggini 2010; Cordell 2009]. Though 

single-marker analysis remains a useful tool in genetic association studies, SNP-set-based 

association tests can be an important alternative with several advantages [Wang, et al. 2013]. 

First, they can increase power to detect association by integrating signals from multiple 

causal variants and reducing the burden of multiple testing (e.g. if the effect is due to a 

causative haplotype). Second, a multi-SNP approach can also account for possible 

interaction effects among variants by adopting appropriate kernel functions. Third, the 

findings obtained from gene- or region-based tests can also be investigated for functional or 

pathogenic importance as basic functional units of inheritance [Li, et al. 2011].

In the past few years, SNP-set-based association tests have gained popularity in genetic 

research. A major category of these methods is based on a kernel machine regression 

framework. These methods assume the regression coefficients of SNPs follow a distribution 

with shared variance components, and build corresponding score statistics for inference. The 

sequence kernel association test (SKAT) method was first proposed for population-based 

case-control studies, and then extended to family-based studies. The extensions, however, 

have adopted various strategies. One group of methods accounts for the kinship correlation 

among family members using either a linear mixed effect (LME) model or a generalized 

estimating equation (GEE) framework [Chen, et al. 2013; Wang, et al. 2013], referred to as 

famSKAT and gSKAT, respectively. Both famSKAT and gSKAT methods are not based on 

the conditional genotypes of the offspring, but directly model the association between 
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genotypes and phenotypes of all individuals. These methods can improve the statistical 

power by integrating both within- and between- family variations, but they may also be 

susceptible to population stratification for the same reason. As an alternative, the family-

based sequence kernel association test (FB-SKAT) was developed. It models the offspring 

genotypes conditional on parental genotypes, and is robust to population stratification 

[Ionita-Laza, et al. 2013]. In addition, since association is tested between the phenotypes and 

conditional genotypes, founder phenotypes are not required in the study, as is commonly the 

case for studies with family trios.

Recently, we proposed a generalized genetic random field (GGRF) framework for testing 

phenotype-genotype associations in population-based case-control studies. A random field is 

a stochastic process that takes values in a Euclidean space, and the random variables are 

usually spatially correlated [Besag 1974]. In the GGRF framework, a k-dimensional 

Euclidean space can be constructed by k SNPs of interest. The phenotype of each individual 

can be mapped to a location in the space using his/her k-locus genotype as coordinates. In 

the presence of a gene-phenotype association, individuals tend to have similar phenotypes if 

their genotypes are “adjacent” in the Euclidean space [Li, et al. 2014]. Analogous to other 

similarity-based methods [Lee, et al. 2012; Tzeng, et al. 2009; Wu, et al. 2011], the GGRF 

method allows for multiple variants with different magnitude and directionality (e.g. risk and 

protective) of effect sizes, and is computationally efficient for high-dimensional genomic 

data analysis. Furthermore, it is asymptotically well behaved, and can be applied to small-

scale data without the need of small-sample adjustment.

In this article, we extend the GGRF method to the analysis of family data. This family-based 

GGRF (FB-GGRF) method is similar to FB-SKAT in that it models the offspring genotypes 

conditional on parental genotypes, and thus, is robust to population stratification. Here, we 

assume that the phenotypes of offspring are the outcomes of interest. This method can be 

applied to studies with case-parent and control-parent trio designs, or family-trio designs 

with quantitative phenotypes. We also use a Hotelling’s T2 test for studies with case-parent 

trios only designs [Shi, et al. 2007]. The performance of FB-GGRF was compared with that 

of FB-SKAT via simulation studies, and further illustrated using a study of congenital heart 

defects (CHDs) with case-parent and control-parent trios.

2. METHODS

FB-GGRF for Family Trios with Quantitative or Binary Phenotypes

We and others have proposed a GGRF method for population-based case-control studies [Li, 

et al. 2014]. Following similar notations, we assume K variants in a gene or a genetic region 

and M covariates (e.g., age) are available for N family trios. Let yi be the phenotype for the 

i-th offspring; Xi = (xi,1, xi,2, …, xi,M)′ be the covariates for the i-th offspring, including 

maternal or paternal environmental exposures; , 

 and  be the K-variant genotype for 

the offspring, father and mother of the i-th family, respectively, coded as the minor allele 

counts. We can then evaluate the transmission pattern of these variants by
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Eq. (1)

and ; where the expected minor allele 

counts, , is calculated under the null hypothesis assuming Mendelian 

transmission. The ti,k can be interpreted as the transmission distortion at the k-th variant, 

measuring the difference between the observed genotype of an offspring and the expected 

genotype under Mendelian transmission. This metric was previously adopted in studies with 

case-parent trios only designs and extended for studies with case-spouse and case-offspring 

designs [Kistner, et al. 2009; Lee 2003]. We expect a disease risk allele to be over-

transmitted among case families compared to control families (i.e. ti,j > 0), whereas a 

protective allele would be under-transmitted to case families compared to control families 

(i.e. ti,j < 0).

Similar to GGRF, a conditional auto-regressive (CAR) model is adopted:

Eq. (2)

where y–i denotes phenotypes for offspring from all families other than family i, and 

, where f(·) is the mean function as in a generalized linear model, used for 

adjusting covariates. Specifically, if the phenotype is quantitative, we use the identity link 

f(x) = x; if the phenotype is binary, we use the logistic link ; si,j is a weight 

representing the relative contribution of the j-th offspring in predicting the phenotype of 

offspring i, determined by the genetic similarity between offspring i and j . Assuming there 

is a gene-phenotype association, we expect that the phenotype of an offspring (i.e. yi) can be 

predicted by the phenotypes of offspring from other families (i.e. y–i). The contribution of 

offspring from the j-th family (i.e. yj) is proportional to the genetic similarity between them 

(i.e. si,j).

Here, we define genetic similarity between offspring from two families by their transmission 

distortion at K-SNP loci:

Eq. (3)

where qk is the average transmission distortion at variant k in the population 

( ). The above similarity metric is an un-weighted version of genetic 

relationship which was used by GCTA for heritability estimation [Yang, et al. 2011], and is 

also a centered version of linear kernel which has been used in the sequence kernel 

association test (SKAT) and its extensions [Lee, et al. 2012; Wu, et al. 2011]. Various forms 
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of similarity metrics, such as the identity-by-state (IBS) metric or other p-norm distance-

based similarity metric, can also be adopted [Li, et al. 2014].

In Equation (2), γ is a non-negative coefficient measuring the magnitude of joint association 

between the K variants and phenotypes. Under the null hypothesis of no association (i.e., γ 
= 0), the phenotype of offspring i will be independent of the phenotypes of offspring from 

other families, regardless of their genetic similarity. On the other hand, a large γ indicates a 

strong genetic contribution to the phenotype. Therefore, the joint association between the K 
variants and phenotypes can be tested through a single parameter, H0 : γ = 0 . We construct 

a test statistic via a generalized estimating equation (GEE) framework as:

Eq. (5)

with pH0(γ̂ > γ̂
obs) = P((Y – µ̂)′ (S – γ̂

obsS2)(Y – µ̂ > 0) = P(Q > 0).

In Equation (5), Y, S and µ̂ are the matrix form for the phenotype, genetic similarity, and 

non-genetic mean, respectively; Y = (y1, y2, …, yN)′; S is a N × N similarity matrix with si,j 

as its element in row i and column j, 1 ≤ i ≠ j ≤ N, and zeros on the diagonal; and µ̂ = (X1, 

…… XM)′ β̂. Given an observed value γ̂obs under the null hypothesis of no association, the 

statistic Q = (Y – µ̂)′(S – γ̂S2) (Y – µ̂), asymptotically follows a mixture of Chi-squares, 

, where (λ1, …, λK) are the eigenvalues of the matrix P½(S – γ̂S2) P½ and P = W 
– WX (X′WX)−1 X′W; W is a diagonal matrix with its i-th element wi = 1 for quantitative 

phenotypes, and wi = µ̂i(1 – µ̂i) for binary phenotypes with a logistic link. Davies’ method 

can then be used to obtain the significance level of the association test [Davies 1980]. The 

proposed FB-GGRF method has been implemented in R, and the source code can be 

downloaded in a public repository of GitHub at https://github.com/li498/FB_GGRF.

Hotelling’s T2 test for Case-parent Trios

In the situation when case-parent trios are available, but control families are not, the non-

genetic mean, µ̂, cannot be estimated through a generalized linear model. However, under 

the null hypothesis of no association, alleles are not expected to be over- or under-

transmitted in the population (i.e. Mendel’s law of transmission). In such a situation, we can 

test the transmission distortions, Ti, as defined in Equation (1) by:

Eq. (6)

A Hotelling’s T2 test was previously proposed for detecting multi-SNP effects in studies 

with nuclear families [Shi, et al. 2007]. The same strategy is adopted here by assuming 

multivariate normal distribution of Ti, so that
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Eq. (7)

where T̅ = (T̅
1+ …… + T̅

N)/N and Σ is the variance covariance matrix of Ti.

To account for high dimension data (e.g. N<K) and violations of the multivariate normality 

assumption, we used a modified test proposed by Dempster [Dempster 1960]:

Eq. (8)

A number of other modified Hotelling’s T2 test have been proposed in the literature, and 

may be used as well [Bai and Saranadasa 1996; Srivastava and Du 2008].

Missing Genotypes

In studies with family trios, it is common to have missing genotypes or missing members 

from the families (e.g. parental genotypes are not completely known). In this study, we adopt 

a simple strategy by imputing the missing genotypes as twice the minor allele frequency 

among founder populations. Various other imputation strategies have been suggested in the 

literature [Li, et al. 2009], which may improve the performance.

3. RESULTS

3.1 Simulation Studies

Simulation studies were conducted to evaluate the proposed method, and to compare it 

against the commonly used Family-based Sequence Kernel Association Test (FB-SKAT). 

We evaluated the performance of these two methods by examining their type I error rates, 

statistical power, and robustness to population stratification or missing genotypes/subjects. 

FB-SKAT version 2.1 was used in all simulations. Each simulation scenario was repeated 

100,000 times to evaluate type I error rates, and repeated 1,000 times to evaluate statistical 

power.

Simulation I: Type I Error Evaluation

(a) Simulations in the Absence of Population Stratification: We first evaluated the type I 

error rates when population stratification was absent. We simulated a haplotype pool of 

200,000 haplotypes using software HAPGEN version 2 [Su, et al. 2011]. HapMap Phase 3 

CEU samples (release 2, NCBI Build 36, Utah residents with northern and western 

European ancestry) were used as reference panel to generate haplotypes [International 

HapMap, et al. 2010]. Each haplotype was simulated for the entire chromosome 22, 

including a total of 20,085 variants. The minor allele frequencies (MAF) ranged from an 

extremely low MAF (e.g. 5e-06) to a MAF close to 0.5. The distribution of MAFs is 

illustrated in Figure 1. For each family trio, the parental genotypes were simulated by 

randomly sampling two haplotypes with replacement from the haplotype pool; the offspring 
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genotypes were then simulated by randomly transmitting one haplotype from each parent 

with equal probability. In each simulation, one hundred variants located consecutively on the 

chromosome were randomly selected and tested as a SNP-set.

Phenotypes were simulated independently from the genotypes, in order to evaluate type I 

error rates. We considered phenotypes from three types of study designs: family trios with 

quantitative phenotypes, case-parent and control-parent trios, and case-parent trios only:

1) For family trios with quantitative phenotypes, we first simulated genotypes for 

1,000 family trios. The phenotypes were then simulated from a standard 

normal distribution, N(0,1).

2) For case-parent and control-parent trios, we first simulated genotypes for 

100,000 family trios. The phenotypes were then simulated from a Bernoulli 

distribution, Bernoulli (0.05). A total of 1,000 family trios, including 500 case-

parent trios and 500 control-parent trios, were then randomly selected as the 

study sample.

3) For case-parent trios only, we first simulated genotypes and phenotypes for 

100,000 family trios similar to that of binary phenotypes, and then randomly 

selected 500 case-parent trios as the study sample.

The type I error rates of two methods were also evaluated in the presence of missing 

genotypes. We first simulated all genotypes and phenotypes as previously described, and 

then considered three scenarios with missing genotypes: 1) ten percent of the genotypes in 

all subjects were randomly selected and set to missing. 2) Twenty percent of the subjects, 

including both parents and offspring, were randomly selected, and their entire genotypes 

were set to missing. 3) Thirty percent of the subjects, including both parents and offspring, 

were randomly selected, and their entire genotypes were set to missing.

(b) Simulations in the Presence of Population Stratification: To evaluate type I error rates 

in the presence of PS, we considered an admixed population with 2 ethnicity groups: CEU 

and ASW (African ancestry in southwest USA). A haplotype pool of 10,000 haplotypes was 

simulated for each ethnicity group using software HAPGEN version 2. The genotypes in 

each subpopulation were simulated as described for non-PS simulations. For family trios 

with quantitative phenotypes, the two subpopulations had a baseline phenotype difference of 

0.3, while for case-parent/control parent trios and case-parent trios only, the disease 

prevalence was 10% and 40% for the two subpopulations, respectively. Type I error rates 

were also evaluated in the presence of missing genotypes or missing subjects.

Simulation II: Power Comparison for Family Trios with Quantitative 
Phenotypes—We first simulated genotypes for 1,000 family trios as described for non-PS 

simulations. The phenotype of offspring in the i-th family was then simulated as:

Eq. (9)
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where xij was the minor allele counts for the j-th variant of the offspring in family i; εi was a 

random error following a standard normal distribution; β0 was the baseline level of 

phenotypes, which was set to 0; βj was the effect size of the j-th variant.

We assumed the effect sizes were inversely correlated with the minor allele frequencies 

(MAF) of variants:

where c was a constant adjusted to ensure the power of two methods were within a 

reasonable range. We examined performance with varying proportion of causal variants (i.e. 

5%, 10% and 20%) and directionality of effect sizes (i.e. positive or negative effect). For 

unidirectional scenarios, all effect sizes were assumed to be positive, while for bi-directional 

scenarios, a sign factor 1 or −1 was randomly selected for each βj with a probability of 0.5.

Simulation III: Power Comparison for Case-parent and Control-parent Trios—
We first simulated genotypes for 100,000 family trios as described for non-PS simulations. 

The phenotypes were simulated as:

Eq. (10)

where β0 was adjusted to ensure the disease prevalence was approximately 5% in the 

population. The effect size, βj, was defined similarly to that in Equation (9). A total of 1,000 

trios, including 500 hundred case-parent trios and 500 control-parent trios were randomly 

selected as the study sample. The performance of two methods was examined by varying the 

proportion of causal variants (i.e. 5%, 10% and 20%) and directionality of effect sizes (i.e. 

unidirectional and bi-directional).

Simulation IV: Power comparison for Case-parent Trios Only—Genotypes and 

phenotypes were simulated similar to case-parent and control-parent scenarios (Simulation 

III), and 500 case-parent trios were then randomly selected as the study sample. The 

performance of two methods was examined by varying the proportion of causal variants (i.e. 

5%, 10% and 20%) and directionality of effect sizes (i.e. unidirectional and bi-directional).

3.2 Simulation Results

Simulation I: Type I Errors—The results for type I error rates are summarized in Table 1. 

We evaluated the type I error rates at various significance levels, including 0.05, 0.01, and 

0.001. The results suggest that both FB-SKAT and FB-GGRF had well controlled type I 

error rates at various significance levels for all study designs (i.e. family trios with 

quantitative phenotypes, case-parent and control parent trios, and case-parent trios). The 

type I error rate of Hotelling’s T2 test was well controlled at a significance level of 0.05, but 

was slightly inflated at the 0.001 level. The type I error rates of all methods were robust to 

population stratification and missing genotypes. We also evaluated the type I error rates for 

Li et al. Page 8

Genet Epidemiol. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



their population-based alternatives, GGRF and SKAT, by using offspring genotypes only. 

GGRF and SKAT had well controlled type I error rates without PS and inflated type I error 

rates in the presence of PS, confirming the existence of confounding effect due to population 

stratification in our simulated data (results not shown).

Simulation II: Power Comparison for Family Trios with Quantitative 
Phenotypes—Since all methods were robust to PS in terms of type I error rates, we 

evaluated their power without considering PS. Figure 2 summarizes the power comparison 

between FB-GGRF and FB-SKAT for quantitative phenotypes. The power of both methods 

increased as the proportion of causal variants increased. Both methods had robust power for 

bi-directional effect sizes (i.e. positive or negative effect). Under our simulation scenarios, 

FB-GGRF attained an average of 20% (SD=9.7%) increase in power over FB-SKAT. The 

power of FB-GGRF decreased with increasing percentages of missing genotypes. On the 

other hand, the power of FB-SKAT was less affected by missing genotypes or missing 

subjects.

Simulation III: Power Comparison for Case-parent and Control-parent Trios 
and Simulation IV: Power Comparison for Case-parent Trios only—Figure 3 and 

Figure 4 summarize the power comparison between FB-GGRF and FB-SKAT for case-

parent and control-parent trios, and the power comparison between Hotelling’s T2 test and 

FB-SKAT for case-parent trios only, respectively. The results were highly consistent with the 

power comparison for quantitative phenotypes. In all simulation scenarios, FB-GGRF 

(Hotelling’s T2 test) had higher power than FB-SKAT. On average, FB-GGRF attained 20% 

(SD=9.4%) increase in power, while Hotelling’s T2 test attained 17.8% (SD=9.3%) increase 

in power. The power of FB-SKAT was less affected by missing genotypes than that of FB-

GGRF or Hotelling’s T2 test.

3.3 Application to a Study of Congenital Heart Defects (CHDs)

To illustrate these tests on real data, we applied FB-GGRF and FB-SKAT to a study of 

congenital heart defects with case-parent and control-parent trios. The dataset was part of 

the National Birth Defects Prevention Study (NBDPS), a large-scale multi-center study 

covering an annual birth population of ∼ 482,000, or 10% of U.S. births. CHD cases were 

ascertained from birth defect registries in ten participating states that had similar inclusion 

criteria: Arkansas, California, Georgia, Iowa, Massachusetts, New Jersey, New York, North 

Carolina, Texas, and Utah. A detailed description of NBDPS protocols can be found 

elsewhere [Gallagher, et al. 2011; Rasmussen, et al. 2002; Reefhuis, et al. 2015; Yoon, et al. 

2001]. In this study, cases were singleton, live-born infants with conotruncal heart defects 

(CTDs), whereas controls were singleton live-born infants without any structural birth 

defect. To be eligible for the study, the mothers needed to have an estimated date of delivery 

between October 1997 and August 2008, have completed a maternal interview, and provided 

buccal samples for genotyping.

All eligible infants and their parents who provided DNA samples were genotyped using the 

Illumina GoldenGate custom genotyping platform. SNPs were selected from candidate 

genes in the homocysteine, folate, and transsulfuration pathways that are potentially related 
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to the development of CHDs. After genotyping and subsequent quality control checks, the 

final study population included a total of 616 case families and 1,645 control families. A 

large proportion of the families were incomplete with one or two missing members. Among 

616 case families, there were 230 trios, 101 mother-offspring duos, 31 father-offspring duos, 

90 father-mother duos, 96 mother-only, 31 father-only and 37 offspring-only families. 

Among 1,645 control families, there were 559 trios, 316 mother-offspring duos, 128 father-

offspring duos, 143 father-mother duos, 242 mother-only, 94 father-only and 163 offspring-

only families. Genotype data was available for ∼921 bi-allelic SNPs in 60 candidate genes 

for each individual. The unavailable members from incomplete trios were handled as 

missing genotypes. The detailed DNA collection, genotyping, and quality control procedures 

can be found elsewhere [Chowdhury, et al. 2012; Hobbs, et al. 2014]. The maternal 

characteristics are summarized in Table 2. The case mothers were slightly older than the 

control mothers (P-value=0.002), but the age difference may not be of any clinical 

significance (28.3 years versus 27.5 years). Case and control mothers did not differ on any of 

the other demographics and lifestyle characteristics (P-values>0.05).

We conducted a gene-based association test for each of the sixty candidate genes using FB-

GGRF and FB-SKAT. The pairwise P-values are compared in Figure 5. The P-values of two 

methods are generally along the diagonal, indicating that two methods are consistent with 

each other in terms of overall significance. Using a Bonferroni corrected threshold (i.e. 

0.05/60), five and two genes were identified to have significant associations with CHD 

phenotype by FB-GGRF and FB-SKAT, respectively. The genes identified by either method 

are summarized in Table 3. Out of the seven genes identified by either FB-GGRF or FB-

SKAT, six genes had P-values less than the nominal threshold of 0.05 for both methods. 

These results suggested that the two methods are generally consistent with each other, but 

may perform differently on each individual gene.

4. DISCUSSION

We have extended a previously proposed GGRF method to a FB-GGRF method for family-

based association tests. The FB-GGRF method examines the transmission distortion of a set 

of SNPs by modeling the offspring genotypes conditional on parental genotypes, and thus is 

robust to population stratification. A similar strategy has previously been used to extend 

SKAT method to a FB-SKAT method [Ionita-Laza, et al. 2013]. In this article, we have 

empirically demonstrated that FB-GGRF may attain higher power than FB-SKAT under 

various disease scenarios. The proposed FB-GGRF method can also account for non-

normally distributed phenotypes by specifying a link function through a generalized linear 

model framework. In the Appendix, we conducted additional simulations for phenotypes 

following a Poisson distribution, demonstrating that the performance of FB-GGRF can be 

much improved if the appropriate link function is used. Further, the score statistic of FB-

SKAT asymptotically follows a mixture of Chi-square distribution when the phenotypes are 

normally distributed. However, the inference of FB-SKAT by using asymptotic distribution 

was known to be conservative for small sample size or binary phenotypes [Ionita-Laza, et al. 

2013]. Therefore, a moment matching approach was implemented by FB-SKAT to obtain its 

testing P-values. More precisely, the variance and kurtosis of its score statistic was estimated 

empirically by performing Monte Carlo simulations. In our study, the number of Monte 
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Carlo simulations was set to 10,000, which is the default setting of FB-SKAT. On the other 

hand, FB-GGRF is asymptotically well behaved and can be applied efficiently. The results 

from the analysis of CHD dataset also appear to be consistent with these simulations.

We have focused on family-based studies with the simplest pedigree structure (i.e. family 

trios). In fact, both FB-SKAT and FB-GGRF can be generalized to other complex pedigree 

structures by breaking them down to family trios, assuming offspring genotypes are 

independent conditional on their parental genotypes. Both methods evaluate the transmission 

of alleles from parents to offspring, and gain a major advantage for being robust to 

population stratification. The unconditional methods (i.e. famSKAT and gSKAT) utilize both 

within- and between- family information for power improvement. However, they may also 

be susceptible to population stratification, and cannot be applied when founder phenotypes 

are not available. Therefore, a direct comparison between conditional methods and 

unconditional methods is not straightforward.

The proposed FB-GGRF has a few limitations. First, it cannot be directly applied to studies 

with only case-parent trios. In such a situation, we have proposed to use a modified 

Hotelling’s T2 test, which has been previously adopted in the literature [Shi, et al. 2007]. 

Second, in this study, we have imputed the missing genotypes as twice the minor allele 

frequency in founder populations. Imputation based on minor allele frequencies has been 

commonly used in existing studies [Chen, et al. 2013; Wang, et al. 2013]. Though 

convenient and easy, this imputation strategy tends to bias the association towards the null, 

resulting in power loss. The missing genotype can sometimes be partly or fully inferred 

based on Mendelian transmission. Incorporating other imputation methods can potentially 

improve the performance. The genotype imputation among related individuals is commonly 

based on the idea that family members share long stretches of haplotypes. Several widely 

used procedures have been implemented in packages such as MERLIN and MENDEL 

[Abecasis, et al. 2002; Abecasis and Wigginton 2005; Lange, et al. 2005].

As we discussed in a previous publication, the proposed GGRF framework has a close 

connection to the SKAT framework [Li, et al. 2014]. Both methods can be interpreted as 

similarity-based methods, but they model the correlation structure differently. When the 

phenotypes are normally distributed, the GGRF model can be expressed as: Y ∼ Xβ + ν, ν 
∼ N(0, σ2(I – γS)−1). On the other hand, the SKAT model can be written as a linear mixed 

model: Y ∼ Xβ + υ, υ ∼ N(0, σ2 I + τ2K); where σ2 is the variance of Yi under the null 

hypothesis; τ2K represents the variance component for the genetic effects [Kwee, et al. 

2008; Liu, et al. 2007; Wu, et al. 2010]. The two models are equivalent under the null 

hypothesis of no association (i.e., τ=0 in SKAT or γ=0 in GGRF), but have different 

modeling of correlation structure under the alternative, which may lead to different 

performance.

In an application to a CHD dataset of case-parent/control-parent trios, FB-GGRF and FB-

SKAT identified five and two genes, respectively. Though none of these genes overlapped, 

both methods achieved nominal significant P-values (i.e. < 0.05) for most of the identified 

genes. This result indicates that two methods are consistent for testing the overall 

association, but may perform differently for each individual gene due to the different ways 
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of modeling genetic effects. We also applied Hoteling T2 test and FB-SKAT to the case 

families only, but none of the genes were significant after Bonferroni correction (See 

Supplementary Materials). The identified genes are all from the transsulfuration or 

homocysteine pathways. The metabolic pathway from homocysteine to glutathione is 

referred to as the transsulfuration pathway [Hobbs, et al. 2005]. Elevated homocysteine is 

associated with alterations in the transsulfuration pathway that lead to greater oxidative 

stress [Huang, et al. 2001]. Homocysteine is a sulfur-containing amino acid that plays a 

crucial role in methylation reactions. Transfer of the methyl group from betaine to 

homocysteine creates methionine, which donates the methyl group to methylate DNA, 

proteins, lipids, and other intracellular metabolites. Anomalies in homocysteine metabolism 

have been implicated in various disorders, such as cardiovascular diseases [Giusti, et al. 

2010; McGeachie, et al. 2009; Weisberg, et al. 2003], orofacial cleft defects [Mostowska, et 

al. 2010a; Mostowska, et al. 2010b], and neural tube defects [Shaw, et al. 2009]. Although 

results from our CHD application are only suggestive, they provide promising candidates for 

future studies to investigate and to replicate.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Distribution of minor allele frequencies for variants on chromosome 22 of CEU populations
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Figure 2. 
Power evaluation of two methods with normally distributed phenotypes by varying the 

proportion of causal variants and missing genotypes. Three missing genotypes scenarios 

include: 1) ten percent randomly missing SNPs, 2) twenty percent randomly missing 

subjects, and 3) thirty percent randomly missing subjects.

Dark color: Power for FB-GGRF

Light color: Power of FB-SKAT
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Figure 3. 
Power evaluation of two methods with binary phenotypes (case-parent/control-parent trios 

design) by varying the proportion of causal variants and missing genotypes. Three missing 

genotypes scenarios include: 1) ten percent randomly missing SNPs, 2) twenty percent 

randomly missing subjects, and 3) thirty percent randomly missing subjects.

Dark color: Power for FB-GGRF

Light color: Power of FB-SKAT
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Figure 4. 
Power evaluation of two methods with case-only phenotype (case-parent trios design) by 

varying the proportion of causal variants and missing genotypes. Three missing genotypes 

scenarios include: 1) ten percent randomly missing SNPs, 2) twenty percent randomly 

missing subjects, and 3) thirty percent randomly missing subjects.

Dark color: Power of Hotelling’s T2 test

Light color: Power of FB-SKAT
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Figure 5. 
Comparison of testing p-values for 60 genes in the CHD study by using FB-GGRF and FB-

SKAT (ten-based negative logarithms scale)

Dashed line: Bonferroni threshold for 60 genes
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Table 2

Maternal characteristics for 616 case families and 1,645 control families enrolled in National Birth Defects 

Prevention Study, 1999–2008

Case Control

(N=616) (N=1,645)

Age at delivery (years) 28.3 ± 6.1 27.5 ± 6.0

Race

African American 49 (8%) 143 (9%)

Caucasian 401 (66%) 1,136 (69%)

Hispanic 123 (20%) 285 (17%)

Others 39 (6%) 78 (5%)

Missing information 4 3

Education

<12 years 83 (14%) 217 (13%)

High school degree or equivalent 167 (27%) 413 (25%)

1–3 years of college 173 (28%) 454 (28%)

At least 4 years of college or Bachelor degree 190 (31%) 559 (34%)

Missing information 3 2

Household income

Less than 10 Thousand 94 (16%) 236 (15%)

10 to 30 Thousand 150 (26%) 408 (27%)

30 to 50 Thousand Dollars 118 (20%) 348 (23%)

More than 50 Thousand 217 (37%) 538 (35%)

Missing information 37 115

Folic acid supplementation

No 299 (49%) 738 (45%)

Yes1 314 (51%) 907 (55%)

Missing information 3 0

BMI

Underweight (BMI <18.5) 31 (5%) 74 (5%)

Normal weight (18.5 <=BMI <25) 298 (50%) 880 (55%)

Overweight (25 <=BMI <30) 141 (24%) 360 (23%)

Obese (>=30) 121 (20%) 281 (18%)

Missing information 25 50

Alcohol consumption

No 460 (76%) 1,251 (76%)

Yes2 149 (24%) 390 (24%)

Missing information 7 4

Cigarette smoking

No 498 (81%) 1,356 (82%)

Yes3 114 (19%) 288 (18%)

Missing information 4 1
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1
Folic acid supplementation yes is defined as periconceptional folate supplement use at least two months during the exposure window (i.e. one 

month prior to conception and two months after conception).

2
Alcohol consumption yes is defined as drinking during the three months after pregnancy.

3
Cigarette smoking yes is defined as smoking during the three months after pregnancy.
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